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Introduction and setup
We analyze one-dimensional Bose-Hubbard chain with L sites in the semiclassical regime with total occupation number N → ∞. This system is
nonintegrable and exhibits both classical and quantum chaos. The quantum and semiclassical Hamiltonians of the system read:
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where J is the hopping strength, UBH is the on-site Coulomb repulsion energy, µ is the chemical potential, b†j , bj are the bosonic creation and annihilation
operators, nj is the number operator at site j, U ≡ UBHN is the rescaled Coulomb energy and Ij , ϕj are classical action-angle variables for this
Hamiltonian. The actions Ij are really semiclassical expectation values of occupation numbers: Ij = ⟨b†jbj⟩|N→∞.

Dynamics and weak chaos
As could be expected, the Mott vs. superfluid
regime (U/J large vs. U/J small) is character-
ized by mostly localized vs. mostly delocalized
classical orbits. Typical orbits are shown in Fig-
ure 1.
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Figure 1: The orbits (left) and the time evolu-
tion of actions (right) for the two Mott regime
(top) and the superfluid regime (bottom). The
chain length is L = 10.

However, the existence of chaos is completely in-
sensitive to the Mott/superfluid transition and
solely depends on occupation numbers (Figure
2). Initially filled sites (n = 4, 5) always ex-
hibit strong chaos and large Lyapunov expo-
nents, whilst the dynamics of initially empty
sites is to a good extent regular, even for chains
of length L ∼ 100 (despite the widespread belief
that many-body nonintegrable systems typically
show strong chaos).
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Figure 2: Lyapunov exponent for the classical
orbits corresponding to actions/occupation
numbers at sites 1,2,4,5,6,9 as a function of
chemical potential and Coulomb repulsion.
Initially filled sites 4 and 5 show strong chaos.
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Anomalous and normal diffusion
This system exhibits anomalous diffusion (superdiffusion) in the sense that the growth of the variance
of the action in some ensemble of orbits grows faster than linear: ⟨∆I2⟩ ∼ tζ , ζ > 1. (ζ = 1 would
be normal diffusion). This is true up to some crossover time t0. The superdiffusion exponents take
their values from two discrete sets:

• For site number n, the transport exponent is generically ζn = 4m (m = 0, 1, 2 . . .), where m is
the distance to the nearest non-empty site (if the site n itself starts non-empty we have m = 0).

• For specific initial combinations of occupation numbers with a blend of resonant and non-
resonant sites, the transport exponent becomes ζn = 2m (m = 0, 1, 2 . . .).

The diffusion of actions is nothing but particle transport – remember that actions Ij are the semi-
classical values of the occupation numbers nj . The same exponents appear both in Mott and
superfluid regimes, as can be seen in Figure 3.
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Figure 3: Log-log plot of the action variance
growth in time (left) and mean values of actions
(right) in the Mott regime (top) and superfluid
regime (bottom). Colors encode different sites
and black dashed lines are the fits to analytic
expressions ⟨∆I2⟩ ∼ t4m,m ∈ N.

A very simple derivation of the superdiffusion
exponents ζn can be obtained within the for-
malism of G. M. Zaslavsky, Phys. Rep. 371,
461 (2002). Perturbative expansion of the
BH Hamiltonian near a filled site leads to a
pendulum-like effective Hamiltonian:

Hpert ∼
U

2
I21 − const.

I0
cosϕ1,

where I0 ∼ 1 is an initially filled site and I1 is
the initially empty neighboring site. The pen-
dulum period is T1 ∝

√
I0, leading to the scale

invariance in time and in action space:

(T1, I1) 7→ (λTT1, λII1), λI = λ2
T .

According to Zaslavsky, the diffusion exponent
for neighboring sites is ζ1 = 2 log λI/λT = 4.
Iterating this for sites of distance m we get ζn =
4m. The case ζm = 2m is more complicated as
it depends sensitively on initial conditions.

At late times (t ≫ t0), the system effectively thermalizes and normal diffusion (hydrodynamic regime)
replaces anomalous diffusion (Figure 4). In the early (superdiffusion) regime the partition function
is well described by the quenched approximation (considering the actions as quenched) and in the
late normal diffusion regime is becomes annealed in the actions.
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Figure 4: Log-log plot of the action variance growth in time.
In the left panel we see both superdiffusion (with exponents
ζn = 0, 4, 8) at early times and normal diffusion (ζn = 1)
for late times. In the right panel we zoom-in to the normal
diffusion regime.

The normal diffusion coefficient can
be derived from the Langevin equa-
tion in the Ito formalism. Regarding
the angle-dependent part of the equa-
tions of motion as a Wiener process,
we write the Langevin equation as

dIn = gnm(I(t = 0))dWm(t)

⟨Wi(t)Wj(t
′)⟩ = δ(t− t′)σ2

ij ,

where σ2
ij is obtained by averaging

the action-dependent part of the equa-
tions of motion.

Discrete nonlinear Schrödinger equation (DNSE)
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Figure 5: Evolution of actions (blue) versus the analytic prediction
from DNSE (magenta). The period of oscillations (2µ) is in very
good agreement.


