Fermi-Hubbard physics with a Quantum Gas Microscope

P. Bojović¹, J. Koepsell¹, J. Vijayan¹, P. Sompet¹, G. Salomon¹, S. Hirthe¹, D. Bourgund¹, I.Bloch^{1,2} & C. Gross¹

¹Max-Planck-Institut für Quantenoptik, Garching, Germany ²Ludwig-Maximilians-Universität, München, Germany

2D

Competition between dopant delocalization and magnetic energy → Polaron formation

Mobile Doublon

→ Sign reversal of correlations around mobile doublon

To run this kind of experiment extremely stable lasers are necessary!

Planned upgrade:

- Goal: exchange most of the ECDLs with one stable, narrow linewidth, single mode, single frequency, high power (>1 W) laser system
- Laser system parts: ► self-built 1342nm linear laser ► single pass solid state optical amplifier Frequency doubling cavity (1342nm \rightarrow 671nm)
- To the best of our knowledge, this would be the first 671nm laser system working on a single pass MOPA principle

1342nm external cavity diode laser (ECDL) Main laser elements:

- → Small polaron size of around two sites
- → Pinning doublon suppresses polaron formation

Dynamical Spin-Charge Separation

1D

Excitation introduces (Δ charge) = e and (Δ spin) = 1/2

at time t > 0

Atomic density after quench 0.5 1.0 1.5 12 -12 -8 -4 0 4 x-position (sites) Removal efficiency vs. temperature 1.0 0.8 1.0

used as a seed for optical amplifier

• AR coated laser diode (Toptica) • outcoupling mirror (30% reflectivity) • narrow linewidth interference filter (0.8nm, single mode operation)

1342nm laser beam profile

Inspired by "Bailard, X. et. al. Optics Communications 266, 609 -613 (2006)"

Solid state optical amplifier

Frequency doubling cavity

References

G. Salomon *et al.*, Nature, doi: 10.1038/s41586-018-0778-7 (2018) J. Koepsell et al., Nature, doi: 10.1038/s41586-019-1463-1 (2019) J. Vijayan, P. Sompet *et al.*, arXiv:1905.13638 (2018)