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Introduction

Introduction Motivation Theory Synthesis Setup Results Conclusion
The growing interest in the study of hybrid metal halide perovskites Many of these functional properties are closely related to the features of the
MAPbX; (MA = CH;NH,;*, X = |, Br, Cl) as new materials for use in solar phonon spectrum and the electron-phonon interaction.
cells and photovoltaic devices is due to such excellent optoelectronic Notwithstanding a large number of studies of optical properties of hybrid
properties [1] as: perovskites, most of them were carried out on thin films. In this work, high quality

large single crystals of methyl ammonia lead iodide (CH;NH;Pbl;) were
investigated by high-resolution (up to 0.2 cm') spectroscopy in the wide spectral
« optimal band gap: /.55 eV; (15—650 cm!, 1750 — 12000 cm') and temperature (5 — 330 K) ranges.

» extremely high luminescence efficiency;

* high value of the diffusion length of charge carriers: | 75 pm; 5w
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Hybrid organometallic perovskites applications Importance of researching a single crystal form

Devices based on perovskite [2]

Solar cells [4]

cathode

perovskite

(100) facet %

Photodetectors [7]

[2] F. Brivio, . M. Frost, J. M. Skelton, et. al., Phys. [4] T. Brenner, D. Egger, L. Kronik, G. Hodes, D.

Rev. B: Condens. Matter Mater. Phys., 92, Cahen, Nat. Rev. Mater. |, 15007 (2016).

144308, (2015). [6] A. Zhizhchenko, S. Syubaev, A. Berestennikov,

[3] Z.-K.Tan, R. S. Moghaddam, M. L. Lai, et al., et al,ACS Nano 13,4,4140, (2019).

Nature Nanotech 9, 687-692 (2014). [7] Z. Lian, Q.Yan, Q. Ly, et al., Scientific
Reports, 5, 16563 (2015).

Currently, perovskite thin films are being intensively studied, and most of the
claimed applications are focused specifically on polycrystalline thin films.
Accordingly, many recent reviews regarding progress in perovskites focus on
their form of polycrystalline film. However, the study of the fundamental
properties of organometallic perovskites should be carried out precisely on
single crystals because of their low density of traps and the absence of grain
boundaries. In addition, recent studies have shown that perovskite single
crystals have much better optoelectronic properties than their polycrystalline
film analogues [8].

Best research-cell efficiencies [5]
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CH;NH,Pbl; structural phase transitions
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Tetragonal Orthorhombic
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Three well-separated frequency regions of vibrations
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I5-100 cm™ 900 — 1600 cm™! 3000 and 3200 cm™!
vibrations of the Pbl; network consisting of heavy atoms and CH;NH; rocking modes, C—N stretching, and C-H and N-H stretching mode
translational /librational modes of the MA cation CHj; and NHj; bending vibrations

In this work the reflection spectra in terahertz region and transmission spectra in the mid- and near-infrared (IR) regions of CH;NH;Pbl; are studied for the first
time for single crystals with the aim of obtaining information about low-frequency phonons and multiphonon lattice excitations that was not obtained by previously
used experimental techniques or/and samples.

[2] F. Brivio, J. M. Frost, J. M. Skelton, et. al., Phys. Rev. B: Condens. Matter Mater. Phys., 92, 144308, (2015).
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Sample preparation Composition and structure

) CH;NH;l synthesis

} Two precursors

2) Pbl, synthesis

0.5mm
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\ crystals.

[9]V. E.Anikeeva, O. . Semenova, O. E. Tereshchenko, . Phys.: Conf. Ser.

1124,041008 (2018).

[10] O.I. Semenova, E.S.Yudanova, N.A.Yeryukoy, et. al. Journal of
Crystal Growth. 462,45, (2017).

[I'1] E.S.Yudanova, T.A. Duda, O. E. Tereshchenko, O. |. Semenova,
Journal of Structural Chemistry. 58, 8, 1567, (2017).
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Experimental setup
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Registration of reflection and absorption spectra: Bruker IFS 125HR Fourier
Spectrometer

Range: 10 - 30000 cm"!

Resolution: up to 0.2 cm-!

Sample cooling: CryoMech ST403 closed loop cryostat (Temperature range: 3.5-300 K)
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Table |.The frequencies wy, and w, of the optical modes, observed in the far-
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Absorption spectra of a CH;NH;Pbl; single crystal Different features in parameters of optical modes
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Multiphonon Spectra of CH;NH,Pbl;: Signatures of

Conclusion

Absorption spectra of a CH;NH;Pbl; single crystal

the Tunneling Dynamics of the CH;NH;* Cation
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The line with the frequency 2592 cm™! appears only below the
temperature of the tetragonal to orthorhombic phase transition
at T = 160 K (b). At about 70 K, this broad line splits into three
equidistant (11 cm™) lines (e), which strongly narrow with
further cooling (f).

The line can be tentatively assigned to a combination of the CH,
symmetric bending vibration (1386 cm™), CH;NH,* rocking (906
cm™1), and torsional (305 cm™) motions, but the observed
splitting Av = 11 cm™ could be the tunneling splitting due to
rotational tunneling between three equivalent minima around
the three equilibrium positions 0, *2rn/3 for the torsional
vibration of the molecular cation.

The corresponding correlation time would be t;; = 1/cAv = 3 ps.
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* The high-resolution terahertz (far-IR) reflection and mid- and near-infrared transmission studies t 5 YOTRRAL OF
of CH;NH;Pbl; hybrid perovskite single crystals were performed in a broad range of PHYSICAL
temperatures (5—350 K). CHEMISTRY

* We observed |3 new low-frequency modes not reported previously and investigated the
multiphonon spectra for the first time.

* There are only two modes of the inorganic cage (with frequencies of about 30 and 60 cm™') that
survive in all structural phases of CH;NH;Pbl;. Their frequencies do not change at the phase
transition from the cubic to tetragonal phase (320 K) but experience an abrupt shift at the
tetragonal to orthorhombic transition (160 K).

* A high sensitivity to the structural phase transitions and to changes in the rotational dynamics of
the CH;NH;* molecular cation is demonstrated also by the multiphonon spectra.
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Splitting of selected multiphonon lines observed below the temperature of ~70 K (identified
earlier with a transition to the tunneling dynamics) is tentatively assigned to the tunnelin Infrared Spectra of the
_, & & y ass18 " CH,NH,Pbl, Hybrid Perovskite:

Signatures of Phase Transitions and of
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The growing interest in the study of hybrid metal halide perovskites MAPbX; (MA = CH;NH;*, X = |, Br,
Cl) as new materials for use in solar cells and photovoltaic devices is due to such excellent

optoelectronic properties [1] as:
* extremely high luminescence efficiency;

e optimal band gap: /.55 eV,

* high value of the diffusion length of charge carriers: | /75 um;
e absorption coefficient: /0° cm™;
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Many of these functional properties are closely related to the features of the phonon spectrum and the electron-phonon
USJWAA<'> interaction.

: ‘eas «mmms Notwithstanding a large number of studies of optical properties of hybrid perovskites, most of them were carried out on

___f_ Pilps 85\ SCUTEFloPV thin films. In this work, high quality large single crystals of methyl ammonia lead iodide (CH;NH;Pbl;) were investigated

p7 s, T N v by high-resolution (up to 0.2 cm') spectroscopy in the wide spectral (I5 — 650 cm!, 1750 — 12000 cm') and

(PbS-QD)

CH;NH,Pbl; structural phase
transitions

Tetragonal Orthorhombic

327 K<T< 16l K

Experimental setup

Resolution: up to 0.2 cm’!

Sample cooling: CryoMech ST403 closed loop cryostat (Temperature
range: 3.5-300 K)

Conclusions

* The high-resolution terahertz (far-IR) reflection and mid- and near-
infrared transmission studies of CH;NH;Pbl; hybrid perovskite single
crystals were performed in a broad range of temperatures (5—350 K).
We observed |3 new low-frequency modes not reported previously and
investigated the multiphonon spectra for the first time.

There are only two modes of the inorganic cage (with frequencies of
about 30 and 60 cm™') that survive in all structural phases of
CH;NH,Pbl;. Their frequencies do not change at the phase transition
from the cubic to tetragonal phase (320 K) but experience an abrupt shift
at the tetragonal to orthorhombic transition (160 K).

A high sensitivity to the structural phase transitions and to changes in the
rotational dynamics of the CH;NH;™ molecular cation is demonstrated
also by the multiphonon spectra.

Splitting of selected multiphonon lines observed below the temperature
of ~70 K (identified earlier with a transition to the tunneling dynamics) is
tentatively assigned to the tunneling splitting.

A complete melting of the orientational order above the temperature of
the orthorhombic to tetragonal phase transition leads to a noticeable
broadening of vibrational lines.

Mater. |, 15007 (2016). (2015).
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near-infrared (IR) regions of CH;NH;Pbl; are studied for the first time for single crystals with
the aim of obtaining information about low-frequency phonons and multiphonon lattice Synthesized single crystals
excitations that was not obtained by previously used experimental techniques or/and samples.
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Multipbhonon absorption spectra
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Absorption spectra of a CH;NH;Pbl; single crystal (a) at the
temperatures of 300 and 5 K (bold arrows mark two-phonon lines
observed in the spectra of CH;NH;Pbl; thin films [9]; thin arrows
indicate lines discussed in our work [l 1]). (b—d) Color intensity maps
in the frequency—temperature axes for selected frequency regions. In
(b), the contribution from the strong band at about 3000 cm' is
subtracted. Temperatures T, and T,2 of the structural phase transitions
are marked by horizontal arrows.
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Temperature dependences of the (a, e) integral intensity, (b—d) position,
and (b, €) FWHH for (a, b) a singlet 3918 cm!, (c) a doublet near 2680
cm’!, and (d, e) a triplet near 2600 cm-'. Below 70 K, the width of the
central component of the triplet is presented. The inset (b) shows a
hysteresis for the line position at cooling and heating a CH;NH;Pbl,
single crystal.
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