

VIII International School and Conference on Photonics August 23 - August 27, 2021, Belgrade, Serbia PHOTONICA 2021

Influence of data scaling and normalization on overall neural network performances in photoacoustics

K.Lj. Djordjevic¹, M.I. Jordović-Pavlović², Ž.M. Ćojbašić³, S.P. Galović¹, M.N. Popović¹, M.V. Nešić¹, D.D. Markushev⁵ ¹University of Belgrade, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Belgrade, Serbia ² Western Serbia Academy of Applied Studies, Užice, Trg Svetog Save 34, Uzice, Serbia ³University of Niš, Faculty of Mechanical Engineering, Niš, Serbia

⁵University of Belgrade, Institute of Physics Belgrade - National Institute of the Republic of Serbia, Belgrade - Zemun, Serbia

e-mail: katarinaljdjordjevic@gmail.com

In our previous articles [1,2] we have shown that the application of artificial neural networks (ANNs) in photoacoustics could improve experimental procedures in many ways: better accuracy and precision in investigated sample parameters prediction, better control of the experimental conditions together with approaching to the real-time characterization of the investigated sample, etc. Here we will try to show why the different types of scaling and normalization procedures could be beneficial to the accuracy, precision and numerical stability of the network predicted parameters and network training speed. To do that numerical (Fig.1) or logarithmic scaling and min-max and max normalizations are applied on experimental input data used in the ANNs training process. At the same time, specific numerical scaling is used for network output data (predicted sample thermal and geometric parameters such as thermal diffusivity, linear coefficient of thermal expansion, thickness) to find possible benefits to ANNs performances. Our analysis of training, stability, and accuracy of network prediction will rely on the ANNs trained with or without scaling and/or normalization to find their influence on overall network performances.

Table 1. Training performance of two neural networks. The first with non-scaled output, the second with normalized output

Type of NN	Performance
non-scaled output	0.059084; 809 epochs ; 4 1/2h
scaled output	0.000037822; 1000 epochs;

Table 2. Maximal and average (%) relative error of two neural networks with differently scaled output layer data.

Type of NN	max (%) relative	error	average (%) relative error			
parameters	D_T	$lpha_T$	l	D_T	$lpha_T$	l	
non-scaled output	11.8496	7.2159	0.4632	3.9795	1.7724	0.0632	
normalized output	0.4824	0.2173	0.4756	0.0661	0.0574	0.0720	

Fig. 1. Numerically scaled a) amplitudes and b) phases of the photoacoustic signals used as an input data for network training base formation in frequency domain aimed for electronic parameters calculations.

Table 3. Maximal and average (%) relative error of two neural networks with differently scaled output layer data in signal prediction of randomly selected parameters in the range of changes of parameters.

Table 7. Maximum and average (%) relaative errors, for parameters thermal diffusivity,

expansion and thickness for two groups of amplitudes of photoacoustic signal: (21) amplitudes

Type of NN	max (⁰	%) relativ	e error	average (%) relative error			
parameters	D_T	$lpha_T$	l	D_T	$lpha_T$	l	
non-scaled output	9.2781	8.0963	3.3938	3.2013	1.8035	0.3448	
scaled output	5.7019	6.5365	4.5952	0.5167	0.3886	0.4285	

Table 4. Parameter prediction D_T , α_T , and l, of amplitude neural networks with non-scaled outputs and with normalized outputs on experimental photoacoustic signals. The relative (%) error of prediction of parameters of individual samples is given. Sample no.1 is 830 µm, sample no. 2 is 417 μ m and 3 is 128 μ m.

Rel error (%)	Sa	ample no).1	Sample no.2			Sample no. 3		
parameters	D_T	α_T	l		α_T	l	D_T	α_T	l
non-scaled output	0.6556	0.3590	0.0133	0.6035	0.9553	0.0831	1.9162	1.6576	2.1096
scaled output	0 0555	0.0421	0 0111	0 1200	0 0 2 6 2	0.0502	11 7065	5 7570	11 5 17

thickness from 200 to 1000 mm, and (3) amplitudes thickness from 100 to 200 mm.

Type of NN	max (%	6) relativ	ve error	average (%) relative error			
	D_T	$lpha_T$	l	D_T	α_T	l	
non-normalization 21	0.8021	0.1295	0.6393	0.1177	0.0578	0.0925	
non-normalization 3	5.7019	6.5365	4.5952	3.3097	2.7041	2.7805	
non-normalization on 1 21	5.1605	1.7776	1.9282	0.5256	0.2269	0.2163	
non-normalization on 1 3	69.7347	10.0029	45.8729	26.7540	5.4590	17.6017	
logarithmic normalization21	0.2098	0.5113	0.1928	0.4423	0.3626	0.4781	
logarithmic normalization 3	4.3396	5.2192	6.5777	3.1127	2.0302	3.5607	
max normalization 21	0.9118	0.3266	1.0072	0.2150	0.1154	0.1787	
max normalization 3	3.4993	5.1995	3.4195	1.8928	2.1713	2.3650	
min-max normalization 21	0.8201	0.3875	0.6415	0.1650	0.1177	0.1153	
min-max normalization 3	2.2324	3.8551	2.4005	1.3770	2.2175	1.7892	

Table 8. Relative (%) errors of parameters prediction D_T , α_T and lof experimental signals by neural networks with different normalized amplitude bases: without normalization, logarithmic normalization, normalization to the maximum value and min-max normalization. Results are shown on three samples: the sample no.1 has 830 mm, sample no.2 has 417 mm and sample no.3 has 128 mm.

U.UIII |U.IZ9U |U.UZ03 |U.U39Z |II./U03 |J./J/U |II.34/U

0.4757 0.0661

0.3882 0.0661

0.1417

0.0254

|0.0770||0.0605||0.0068||0.0185||0.0084|

1.0963

0.1939

Table 5. Performance of amplitude neural networks with different normalizations.

Type of normalization	Performan	ce, numb	ochs							
non-normalization	0.000037822									
non-normalization on 1	0.00015258	.00015258 at 240 epoch								
logarithmic normalization	0.00004595	1								
max normalization	0.00000414	.92								
min-max normalization	0.00000041	263								
Table 6. Maximal and average (%) relative e	rror of ind	lependent	test of ex	tracted an	nplitudes of				
photoacoustic signals before tra	ining neural	networks	•							
Type of normalization	max relative error % average relative % error									
parameters	D_T	D_T α_T l D_T α_T l								
non-normalization	0 4874	0 2173	0 4757	0.0661	0 0574	0 0720				

0.4824

0.3472

0.1264

0.0322

1474

0.2173

1.0572

0.2289

0.1998

Rel. error%	Sample no.1			S	ample no.	2	Sample no. 3		
parameters	D_T	$lpha_T$	l	D_T	α_T	l	D_T	α_T	l
no-norm	0.0555	0.0421	0.0111	0.1290	0.0263	0.0592	11.7065	5.7570	11.5476
non-norm on 1	0.0367	0.0812	0.0037	0.1120	0.0635	0.0011	2.8903	2.0515	2.9798
log norm	0.0450	0.0387	0.0204	0.0610	0.0339	0.0130	5.8210	2.3487	6.2749
max norm	0.0672	0.0278	0.0005	0.0774	0.0316	0.0116	1.2337	0.1819	2.3816
min-max norm	0.0366	0.0489	0.0188	0.0651	0.01246	0.0031	2.3220	0.3906	3.1880

Acknowledgements: We are thankful for financial support of this research by the Ministry of Education, Science and Technology development of the Republic of Serbia, contract number 451-03-9/2021-14/200017.

REFERENCES

non-normalization on 1

min-max normalization

max normalization

logarithmic normalization

[1] Djordjevic KLj, Markushev DD, Ćojbašić ŽM, Galović SP, Inverse Problems in Science and Engineering 29 (2020) https://doi.org/10.1080/17415977.2020.1787405 [2] Djordjevic KLj, Galovic SP, Jordovic-Pavlovic MI, Nesic MV, Popovic MN, Ćojbašić ŽM, Markushev DD, Optical and Quantum Electronics 52 (2020) https://doi.org/10.1007/s11082-020-02373-x

0.1700

0.0679

0.0265

0.0574 0.0720

0.1234

0.0729

0.0352