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Introduction
The similarities between the Schrödinger equation in

quantum mechanics and the paraxial wave equation in op-
tics have allowed scientists to study quantum phenomena
in photonic lattices [1,2]. The possibility of imaging the
wave function directly using a CCD camera has emerged
as a key advantage in optics in comparison to electronics
systems [3].

This work suggests the observation of localized states of
topological origin in waveguide arrays. In particular, we use
a generalized Su-Schrieffer-Heeger (SSH) model [4,5].

SSH and Domain-wall defect

Figure 1: (a) Is a SSH chain with t > v, this is called as
trivial case. (b) The topological case with intercell coupling
greater than intracell constant, this is the topological case.
Finally, (c) shows domain wall defects.

The primitive cell of SSH model is composed of two sites
interacting between an intracell (t) and an intercell (v) cou-
pling constant. The hopping ratio defines the topology of
edge wavefunctions from a trivial insulator to a topological
insulator.

The junction of two chains with different topology is
known as a domain wall defect. In this geometry, a zero-
energy localized state appear at the joint.

Figure 2: The upper shows the eigenvalues of the domain
wall defect chain. In the lower it can be visualized the lo-
calized state in the center (junction) associated to the zero-
energy state in the middle of the band.

Now, fixing the coupling constants, chains with different
topology are concatenated by the following Hamiltonian (in
second quantization):
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where N and N ′ are the number of sites of the topo-
logical and trivial chain, respectively; M is the number of
repetitions of domain wall defects and the total of sites in
the geometry are c = M(N + N ′) + N . The main purpose
of this, is to control the topology of the superlattice with
the length not with the intercoupling and intracoupling con-
stants.

Is important to note that the sum of hN have an extra
term. This is because the chain must be closed with the
same chain with which it was started.

Figure 3: Junction states hybridize and interact between
them with energy En = ±tn = 〈L|H|R〉 ∝ exp−(n− 1).

Results
All the results were obtained by numerical simulations

solving the Hamiltonian and the DNLS equation. Firstly we
use the results of the phase diagram in [5] to see how to
obtain topological, trivial insulator or metallic phase.
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Figure 4: Phase diagram of winding number. The red zone
is topological insulator, blue area is the trivial section and
the central white is the metallic phase.

To see the transition and the emergence of the edge
states, different output had been plotted in a heatmap di-
agram.

Figure 5: Output for differents values of N = [6, 80], a fixed
value N ′ = 40 and M = 4. In all of of N have a edge states.

In the original SSH model [3], edge states only appear
when the intercoupling amplitude is greater than intracou-
pling (only in the topological case), but now we have these

states for all values of N , even when is trivial (N < N ′). To
understand this behaviour, the eigenstates with them eigen-
values has been obatined by solving (1) and using the Par-
ticipation ratio R to see where are the localized states:

R =

(∑
i ||ψi||2

)2
N
(∑

i ||ψi||4
), (2)

Localized states
Focusing only on the near-zero-energy area, we observe

that there exist 2M + 2 states, for the topological and trivial
situation. In the first case, we use N = 16, N ′ = 8, M = 4
and we observe two zero-energy states, and that, precisely
are the localized edgte states.

Figure 6: Near-zero-energy band for the topological situa-
tion. We observe localized states at the zero-energy.

For the trivial case, again we focus on the near-zero en-
ergy band. There are localized states in that zone, but is not
in the Fermi energy, is in the extreme for lower and upper
energies.

Figure 7: Near-zero-energy band for the topological situa-
tion. In this case there are not states in the zero-energy, but
there are edge states in the extreme of the band.
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