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Abstract
Optical fiber, unlike other transmission media, features significant change of light propagation properties with increasing signal power, known as Kerr-nonlinear effect, which induces

self-phase modulation (SPM) of the transmitted signal [1, 5]. Moreover, the wavelength of light in one wavelength channel can affect the phase of the wavelength of light in nearby
channels, inducing a nonlinear optical effect known as cross-phase modulation (XPM) [2]. We hereby present the artificial neural networks (NN) as an efficient solution for symbol
detection and constellation design problems for the XPM dominated systems as in [2]. In case of symbol detection, some already proposed constellations have been considered for a
wide range of nonlinearity intensities, and our NN detector has been compared to some established detectors such as Minimum-Distance and Two-Stage detectors [2, 3], where it exhibits
performance superiority while preserving low complexity. In addition, we advance autoencoder technique previously used for SPM dominated channels [4] and adapt it for the XPM
case, which allows precise learning of constellations for specific fiber channel settings and power constraints, in significant improvements in symbol error rates.

System setup

Figure 1: WDM system diagram
Channel model we consider is a well designed theoretical model of coherent detection WDM
(Wavelength-Division-Multiplexed) systems dominated by the residual nonlinear phase noise
introduced by XPM (Figure 1). Each of K multiplexed channels receive input signals Xk
(from the finite set of complex constellation points) to be transmitted through the optical fiber
sectioned into NA spans, yielding output signals Yk. Fiber spans periodically amplify sig-
nal via EFDAs (Erbium-Doped Fiber Amplifiers) which induce zero-mean Gaussian noise
nkz with variance σ2. This noise is combined with the error caused by inter-channel light
wavelength interference, leading to total signal phase shift ΦXPM represented as

ΦXPM = γLeff
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where γ is the nonlinear Kerr-parameter and the effective length Leff is defined as

Leff =
1 − e−αL

α
,

with the attenuation coefficient α and the fiber span length L. Finally, multiplexed fiber
channels can be mathematically described as

Yk = (Xk +
NA∑
z=1

nkz)e
−jΦXPM , k = 1...K.

In this work we consider a system of K = 3 channels having NA = 30 fiber spans of length
L = 80km, with standardly defined parameters: γ = 1.2W−1km−1, α = 0.0578km−1 and
σ2 = 2.14 × 10−6W .

Artificial neural networks, Methods

Figure 2: Autoencoder diagram
This work employs two kinds of deep learning models:
1. Classifiers Each constellation symbol is first one-hot encoded. Many XPM dominated

channel transmissions are simulated in order to generate received signals, which are then
used to train neural network (in a supervised manner) to perform softmax classification;

2. Autoencoders Constellation symbols are one-hot encoded and fed to the encoder network,
which outputs 2D points and tries to learn optimal constellation. Encoder’s output is then
passed through the simulated XPM dominated channel, and received signals fed to the de-
coder network which serves as a softmax classifier, trying to reconstruct correct one-hot
vectors fed to the encoder.

Results
Symbol error rate (SER) performances for different detectors and constellations are shown
in Figure 3. As a referent point we chose a system with standard constellations, QAM 16
and 4-8-4, which are coupled with standard detectors, the Minimum-Distance (MD) and the
Two-Stage (TS) detectors (dotted lines). The SER is lowered down by the usage of a small
complexity neural network (NN) detector which is implemented using 2 hidden layers with
64 tanh activated neurons per layer (dashed lines).

Figure 3: Performance comparison

The SER performances are further improved using the autoencoder having 3 layers of 64
tanh activated neurons for the encoder, which is trained for each average constellation power
in range (solid line), with the same detector as above. The intelligently designed constella-
tions exhibit interesting and intuitively optimal patterns, as illustrated in Figure 4, which
suggest that the autoencoder is able to learn and adapt constellations to the XPM’s most fun-
damental property – small phase shift with larger dispersion for signals with low power (e.g.
-8dBm), and large phase shift with smaller amplitude dispersion for signals with high power
(e.g. 4dBm).

Figure 4: Learned constellations for some average input powers

Conclusion and forthcoming research
• Neural network classifiers can outperform standard detectors for established constellations;

• Autoencoders are capable of designing optimal constellations for a given channel setup;

• Using already trained decoder as a detection network for it’s learned constellation and
optimizing neural network architectures and hyperparameters is to be explored.
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