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Introduction

GaAs-based THz quantum cascade lasers (QCLs) are
fundamentally limited by electron-optical LO-phonon
resonance at around 36meV in GaAs, causing
parasitic non-radiative depopulation of the upper
laser level at room temperature. Promising
alternative semiconductors to solve this problem
include new material systems like ZnO-based with
their larger LO-phonon energy (~72meV) [1]. it was
established [2] that the ZnO-based terahertz sources
can cover the spectral region of 5-12 THz, which is
very important for THz imaging and detection of
explosive materials, and which cannot be covered by
conventional GaAs-based terahertz devices. Recent
progress in growth of non-polar m-plane ZnO-based
neterostructures and devices with low density defects
3], opens a wide perspective towards design and
fabrication of non-polar m-plane ZnO-based unipolar
intersubband structures capable of operation at
elevated temperature. A theoretical analysis of ZnO-
based resonant tunnelling structures would provide a
considerable amount of information about the
gquantum mechanical aspects of electron transport in
these novel heterostructures and would act as an
optimisation tool for specific applications and device

designs.
Methods

= Transfer-matrix method

= Self-consistent Schrodinger-Poisson solver

= Resonant-tunnelling current calculated following
the Tsu-Esaki approach [4]

= Fermi-Dirac statistics in highly doped
emitter/collector

Results
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Figure 1. Current density-voltage characteristics of ZnO/Mg, 152N 5O
resonant tunneling diodes with monolayer-scale fluctuation of barrier
thickness. Nominal layer thickness in nanometres are
5.7/2.0/4.0/2.0/5.7 - see Figure 2. (bold faces - barriers with
fluctuating thicknesses) .
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Figure 2. Self-consistent potential and corresponding electron
concentration for three different biasing conditions. Emitter and

collector layers (underlined) doping is used to be 1x1018cm-3

UNIVERSITY OF LEEDS

%10°

T=300K — Mg mole fraction x=0.15
1.8 - = =Mg mole fraction x=0.2

Mg mole fraction x=0.25
16—t == Mg mole fraction x=0.3 -

J [Alem?]

0.3

Figure 3. Current density-voltage characteristics of ZnO/MgxZni1-xO
resonant tunneling diodes, where x is content of Mg in ZnO/Mg,Zn,_0
Nominal layer thickness in nanometres are 5.7/2.0/4.0/2.0/5.7 (same
as in Figure 2).

Conclusion

« A simulation of coherent electron transport in
non-polar m-plane ZnO/MgZnO double-barrier
resonant tunneling diode by solving
Schrodinger-Poisson equations self-consistently.

- A region with pronounced negative differential
resistance N current density-voltage
characteristics of such devices,

- peak-to-value ratio is highly sensitive on barrier
thickness and Mg composition fluctuation.
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