

PHOTONICA 2021

Structural and Optical Characterization of titanium-carbide and polymethyl methacrylate based nanocomposite

J. Pešić¹, A. Šolajić¹, J. Mitrić¹, M. Gilić¹, I. Pešić², N. Paunović¹, N. Romčević¹ ¹Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; ²Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia

yelena@ipb.ac.rs

ABSTRACT

The rich chemistries and unique morphologies of titanium carbide MXenes made them strong candidates for many applications like sensors and electronic device materials [1]. They can potentially be used as additives to polymers to fabricate composites with outstanding mechanical properties and good electrical conductivities. Presence of titanium-dioxide as a residue of MXene chemical synthesis is researched for it potential benefit on electrochemical properties [2].

In this study we present structural and optical characterization of such polymer nanocomposite titanium-carbide/PMMA (Polymethyl methacrylate) consisting of Ti₃C₂, TiC2 MXenes and TiC, and TiO₂ residues of synthesis in PMMA matrix, as a multicomponent nanocomposite.

Using XRD, SEM, infrared and Raman spectroscopy, followed by comparative study on the vibrational properties using density functional theory calculations we characterize this nanocomposite.

CALCULATIONS

SYNTHESIS AND STRUCTURAL ANALYSIS

	Titanium-carbide flakes		PMMA/TiC		Description
	Raman	IR	Raman	IR	
ω1		62.4		66	Eu, Ti ₃ C ₂
ω2		85.8		81	B1, TiO2 rutile
ω3		119		127	A_2u , Ti_3C_2 and B_1
					TiC ₂
ω4	153				Eg, Ti_3C_2
ω5	204	200	204	195	E, TiO ₂ anatase
ω6	396				A ₂ , TiC ₂ ; E, TiO ₂
					anatase
ω7	514				A ₁ , TiO ₂ anatase
ω8		620		615	Eu, Ti ₃ C ₂
ω9	9 627				Eg, Ti_3C_2
ω10			786		Ag, TiO ₂ rutile
ωΡ		80		150	
f		1		0.25	

MXene are synthesized by exfoliating MAX phase ternary carbides, nitrides, or carbonitrides: M_{n+1}AX_n, where M is an early transition metal, A is a III or IV A-group element and X is carbon/nitrogen. During the synthesis of titanium-carbide MXenes by chemical etching, oxidation can occur which results in presence of TiO₂ consisted of nanosheets and numerous TiO₂ nanocrystals. There are several studies [2,3] whose researched is focused in possible applications of TiO₂-MXene structures. It is demonstrated the synergetic effects of Ti₃C₂ and TiO₂ endowed TiO₂-Ti₃C₂ nanocomposites with excellent properties and improved functionalities. Ti₃C₂ and TiO₂ nanoparticles offered excellent connection between them and facilitated electron exchange. The incorporation of TiO₂ nanoparticles into Ti₃C₂ layers could significantly enhance the electrochemical performance

RAMAN SPECTROSCOPY & CALCULATIONS

Raman spectra of TiC flakes before nanocomposite synthesis and assignation of the modes

DFT calculations were performed using the Quantum Espresso software package [4], based on the plane waves and pseudopotentials. The PBE (Perdew, Burke Ernzehof) exchange-correlation and functional was employed and PAW (Projector augmented waves) pseudopotentials were used. Energy cutoff for wavefunctions and charge density were set to 52 Ry and 575 Ry to ensure the convergence.

M. Barsoum - Department of Materials Science and Engineering, Drexel University, Philadelphia, USA **SAMPLES SYNTHESIS:**

I. Pesic - Faculty of Technology and Metallurgy, Belgrade, Serbia **RAMAN SPECTROSCOPY:** M. Gilic – Institute of Physics Belgrade **INFRARED SPECTROSCOPY:**

N. Paunovic and N. Romcevic – Institute of Physics Belgrade XRD: J. Mitric- Institute of Physics Belgrade CALCULATIONS J. Pesic and A. Solajic – Institute of Physics Belgrade

provided by the Institute of Physics Belgrade and Faculty of Technology and Metallurgy, through the grant by the Ministry of Education, Science and Technological Development of the Republic of Serbia. All calculations were performed using computational resources at Johannes Kepler University, Linz, Austria.

[1] Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W., Advanced Materials 2011, 23, 4248–4253. [2] Zhu, J.; Tang, Y.; Yang, C.; Wang, F.; Cao, M., Journal of the Electrochemical Society 2016, 163, A785–A791. [3] Yupeng Gao and Libo Wang and Aiguo Zhou and Zhengyang Li and Jingkuo Chen and Hari Bala and Qianku Hu and Xinxin Cao, Materials Letters, 150, 62 - 64, 2015. [4] Gianozzi P, Journal of Physics: Condensed Matter 2009, 21, 395502 [5] Abstreiter, G. Light Scattering in Solids IV, ed. by M. Cardona and G. Guntherodt, 1984.

786

Graphene/sp2

VIII International School and Conference on Photonics - PHOTONICA 2021 August 23 - August 27, 2021. Belgrade, Serbia