

Prologue Results 1 Results 2 Epilogue

Relevance of incoherent light-induced coherences for photosynthetic energy transfer

Veljko Janković

Scientific Computing Laboratory Center for the Study of Complex Systems Institute of Physics Belgrade University of Belgrade Republic of Serbia http://www.scl.rs/veljko

Photonica 2021, 23-27. VIII '21.

 Prologue
 Photosynthetic energy transfer

 Results 1
 The dawn of quantum biology

 Results 2
 Open questions

 Epilogue

Photosynthetic energy transfer

- central **physical process** during the **primary steps** of natural photosynthesis
- LH antenna = pigments (e.g. chlorophyll) + protein matrix

 Prologue
 Photosynthetic energy transfer

 Results 1
 The dawn of quantum biology

 Results 2
 Open questions

 Encloque
 Diagram

The dawn of quantum biology: Nature 446, 782 ('07)

Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems

Gregory S. Engel^{1,2}, Tessa R. Calhoun^{1,2}, Elizabeth L. Read^{1,2}, Tae-Kyu Ahn^{1,2}, Tomáš Mančal^{1,2}†, Yuan-Chung Cheng^{1,2}, Robert E. Blankenship^{3,4} & Graham R. Fleming^{1,2}

• 2D FT ES

- \bullet oscillations persist for at least 660 fs
- theory predicts ~ 50 fs
- everything happens in the "warm, wet and noisy environment"
- origin of coherences observed?
- how do they persist?
- coherences and evolution?

 Prologue
 Photosynthetic energy transfer

 Results 1
 The dawn of quantum biology

 Results 2
 Open questions

 Epilogue

Questions that we address

- expt. signal \leftrightarrow nonlinear polarization $P^{(3)}$
 - theoretical nonlinear spectroscopy
- the state of an initially unexcited antenna under different excitation conditions (weak excitation)?
 - density matrix theory including the photoexcitation step
 - interaction with the environment may not be weak, reorganization processes may not be fast
 - Redfield and Förster may not work
 - excitation by pulsed coherent light (in laboratories)

•
$$\left\langle E^{(-)}(\tau_2)E^{(+)}(\tau_1)\right\rangle_R = \underbrace{\left\langle E^{(-)}(\tau_2)\right\rangle_R \left\langle E^{(+)}(\tau_1)\right\rangle_R}_R$$

single-particle part classical factorization

• excitation by continuous incoherent light (in Nature)

•
$$\left\langle E^{(-)}(\tau_2)E^{(+)}(\tau_1)\right\rangle_R = \underbrace{\delta\left\langle E^{(-)}(\tau_2)E^{(+)}(\tau_1)\right\rangle_R}$$

two-particle correlations quantum fluctuations

 Prologue
 Exact excitonic dynamics

 Results 1
 Exact evolution superoperator

 Results 2
 HEOM + photoexitation

 Ebilogue
 Enclosue

Exact excitonic dynamics under driving

- $\bullet\,$ second-order treatment of the interaction with light
- exact treatment of the exciton–environment interaction
 - generalization of the Feynman–Vernon influence functional theory for systems subjected to weak driving

V.J.: Incoherent light-induced coherences in photosynthesis

 Prologue
 Exact excitonic dynamics

 Results 1
 Exact evolution superoperator

 Results 2
 HEOM + photoexitation

 Ebilogue
 Heom + photoexitation

・ 同 ト ・ ヨ ト ・ ヨ ト

Novelty: Exact evolution superoperator

- circumferences represent $C_j(s_2 s_1)$
- straddling diagram (phonon assistance starts in *eg*, and ends in *ee*)

Novelty: HEOM + photoexcitation

- one usually solved the *ee* sector only (ultrafast excitation)
- solving the eg sector is simpler (one-sided objects, WF-like)
- valid for both coherent and incoherent light
- may be solved in any basis (local, excitonic, etc.)

Janković and Mančal, J. Chem. Phys. **153**, 244122 ('20).

 SCIENTIFIC Computing Laboratory	Prologue Results 1 Results 2 Epilogue	Preferred basis Time-dependent vs. stationary picture
	Ephogue	

Asymmetric photosynthetic dimer and preferred basis

- V-type system
- incoherent (chaotic) light
- recombination
- delivery to the RC
- iterative procedure to solve for the steady state ρ^{ss}

• $\langle \widehat{M} \rangle^{ss} = \operatorname{Tr}_M \{ \widehat{M} \rho^{ss} \}$

• the basis in which $\langle \widehat{M} \rangle^{ss}$ is most naturally computed is the eigenbasis of ρ^{ss}

• the preferred basis

- steady-state coherences can be eliminated from $\langle \widehat{M} \rangle^{ss}$
- factors determining preferred basis
 - **<math>\bigcirc** generation
 - 2 energy relaxation
 - **o** recombination
 - 4 extraction at RC

V.J.: Incoherent light-induced coherences in photosynthesis

Prologue **Preferred basis** Results 1 Time-dependent vs. stationary picture **Results 2** Epilogue

Excitonic basis \leftrightarrow preferred basis

$$\begin{pmatrix} |p_0\rangle \\ |p_1\rangle \end{pmatrix} = e^{i\varphi_{px}/2} \begin{pmatrix} e^{i\psi_{px}} & 0 \\ 0 & e^{-i\psi_{px}} \end{pmatrix} \\ \times \begin{pmatrix} \cos\theta_{px} & \sin\theta_{px} \\ -\sin\theta_{px} & \cos\theta_{px} \end{pmatrix} \\ \times \begin{pmatrix} e^{i\Delta_{px}} & 0 \\ 0 & e^{-i\Delta_{px}} \end{pmatrix} \begin{pmatrix} |x_0\rangle \\ |x_1\rangle \end{pmatrix}$$

• slow delivery $(\tau_{\rm RC} \gtrsim 20 \, {\rm ps})$

•
$$\Delta_{px} \to 0$$

• θ_{px} originates from the excitation-environment entanglement

• fast delivery? Janković and Mančal, J. Chem. Phys. **153**, 244110 ('20).

Prologue Results 1 Results 2 Epilogue

Preferred basis Time-dependent vs. stationary picture

Relation between time-dependent and stationary picture

• crucial: the hierarchy of time scales

• $\tau_{\rm ET} \ll \tau_{\rm RC} \ll \tau_{\rm rec}$

Janković and Mančal, J. Chem. Phys. 153, 244110 ('20).

Scientific Computing Laboratory	Prologue Results 1 Results 2 Epilogue	

Epilogue

- we formulate an exact description of excitonic dynamics in molecular aggregates weakly driven by light of arbitrary properties
- we examine the state in which the aggregate finds itself when subjected to continuous driving, excitation delivery, and recombination
- steady-state electronic coherences can be eliminated by transferring to the preferred basis
- slow delivery: like in unloaded aggregate, the interaction with the bath singles out the preferred basis
- fast delivery: relation between time-dependent and stationary picture
 - ultrafast experiments are important because they tell us about $\tau_{\rm ET}$ and determine minimal $\tau_{\rm RC}$ above which ultrafast artifacts are unimporant

Prologue Results 1 Results 2 Epilogue

Collaborators, Funding, Papers

• Prof. Dr Tomáš Mančal

- Fyzikální ústav, Matematicko-fyzikální fakulta Univerzity Karlovy, Praha, ČR
- supported by
 - Czech Science Fund (GAČR)
 - Charles University Research Center of Nano- and Bio-Photonics (junior member of UNCE/SCI/010)
 - Serbian MESTD
- papers
 - Janković and Mančal, J. Chem. Phys. 153, 244110 ('20).
 - Janković and Mančal, J. Chem. Phys. 153, 244122 ('20).